July, 1945

COLUMBUS, OHIO

further chlorination A gave only CH₄CF₂CCl₂CH₃ and CH₄CF₂CHClCH₂Cl, while **B** gave CH₄CF₂-CH₂CHCl₂, then CH₃CF₂CH₂CCl₃ almost exclusively. These results show that the chlorination is directed away from an alpha CH₃ group, and tends to accumulate the chlorine atoms on the same carbon atoms. The failure of CH₂ClCF₂-CH₂CH₃ to be chlorinated to CHCl₂CF₂CH₂CH₃ confirms the direction away from a terminal group alpha to a CF₂ group. Chlorine reactivity tests show that alpha chlorine atoms are immobilized and that beta chlorine atoms are repressed, while gamma chlorine atoms seem to be unaffected.

RECEIVED MAY 7, 194514

(14) This manuscript was originally received on September 24. 1943, and after examination by the editorial board was accepted for publication in TATE JOURNAL. It was, however, referred to the National Defense Research Committee and at their request was withheld from publication, in a confidential file, until clearance was granted on May 5, 1945.

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY AT THE OHIO STATE UNIVERSITY]

The Synthesis and Directed Chlorination of 1,1,1,-Trifluorobutane

BY ALBERT L. HENNE AND JAMES B. HINKAMP

To find out how far a CF₃ group would extend its influence, trifluorobutane, CF₃CH₂CH₂CH₂CH₃, was synthesized and subjected to the action of chlorine. The synthesis problem consisted in devising a practical method for obtaining an intermediate compound, CCl₂==CHCH₂CH₃, from which the desired CF₃CH₂CH₂CH₂ was made by variations of the procedures previously used to synthesize CF₃CH₂CH₃.¹ The chlorination as well as the isolation and identification of the chlorinated compounds were performed in a manner previously described.^{1,2}

Synthesis of CCl₂=CHCH₂CH₃

The sequence CHOCH₂CH₂CH₃, to CHCl₂CH₂-CH₂CH₃, to CHCl=CHCH₂CH₃, to CHCl₂-CHClCH₂CH₃, to CCl₂=CHCH₂CH₃, was first tried. The transformation of butyraldehyde into its dichloride by means of phosphorus pentachloride gave only a 23% yield, which was finally brought up to 39% by a series of time-consuming improvements. Since these improvements called for hydrolysis of the reaction product at 0°, the risk of handling an incompletely hydrolyzed material prevented their application to larger quantities. The dehydrohalogenation to CHCl= CHCH₂CH₃ required a saturated solution of potassium hydroxide in boiling butanol, and gave 64% of olefin together with 29% o recovered dichloride.

For large quantities it was dee...ed safer and more economical to start from technical CH₂Cl-CHClCH₂CH₃. Dehydrohalogenation occurred easily with a 30% solution of sodium hydroxide in denatured alcohol and formed only two of the possible three olefins. The reaction was sufficiently exothermic to maintain itself and it yielded 27% of CH₂=-CClCH₂CH₃, 46% of the desired CHCl=-CHCH₂CH₃ and 16% of recovered dichloride. Since CH₂=-CClCH₂CH₃ was easily transformed into CH₃CF₂CH₂CH₃ used in the preceding study,² this procedure proved to be very satisfactory. The addition of chlorine which synthesizes CHCl₂CH₂CH₂CH₃ was performed in the dark to prevent substitution. Pilot tests showed that water would greatly accelerate the rate of addition, but at the expense of increased substitution. When time matters little, it is best to operate without water, at about 10°, and with a slight excess of olefin, for a net yield of 70–75%. In the presence of water, the reaction proceeds nearly four times faster, but the net yield drops to approximately 55%.

The dehydrohalogenation of CHCl₂CHClCH₂-CH₂ proceeded very easily with either aqueous or alcoholic sodium hydroxide, and gave 96% of the desired CCl₂=CHCH₂CH₃.

Synthesis of CF₃CH₂CH₂CH₃

At room temperature, CCl_2 =-CHCH₂CH₃ does not react with hydrogen fluoride. When the temperature is raised, addition takes place to form CFCl₂CH₂CH₂CH₂, then substitution occurs to yield CF₂ClCH₂CH₂CH₃. With longer reaction periods. higher temperatures, and a greater excess of hydrogen fluoride, the formation of CF₂ClCH₂CH₂CH₃ is progressively enhanced.

A three mole quantity of CCl₂==CHCH₂CH₃ was mixed with 24 moles of hydrogen fluoride in a steel container surmounted by a one meter length of half-inch steel pipe bearing a pressure gage and a releasing needle valve. The top twenty centimeters of the pipe were surrounded by a jacket which could be filled with Dry Ice. The reaction was started by putting the cylinder in a hot water bath, its progress being shown by an increase in pressure due to the formation of hydrogen chloride. With Dry Ice in its container to ensure an efficient dephlegmation, the hydrogen chloride was slowly released into a water absorber by operating the needle valve so as to maintain the pressure between 17 and 20 atmospheres. When the pressure no longer increased, the reaction vessel was cooled in Dry Ice, and its contents were poured onto cracked ice, then worked up by

⁽¹⁾ Henne and Whaley, THIS JOURNAL, 64, 1157 (1942).

⁽²⁾ Henne and Hinkamp, ibid., 67, 1194 (1945).

Vol. 67

steam distillation followed by fractional distillation. Comparative data are:

Reaction temperature, °C.	65	100
Time in hours	18	6
CF2ClCH2CH2CH3 formed, %	5.3	49.6
CFCl ₂ CH ₂ CH ₂ CH ₃ formed, %	33.0	10.3
Recovered dichloride, %	38.0	5.3
Tar, %	10.6	19.4
Material accounted for, %	9 0	87

The dehydrohalogenation of $CF_2ClCH_2CH_2CH_3$ to CF_2 —CHCH₂CH₃ took place with ease but required precise experimental conditions to ensure good yields, because of the low boiling points of the reagent and of the reaction product.

In a three-liter, three-necked flask equipped with a mercury-sealed stirrer, a dropping funnel and a twelve-bulb reflux condenser, 180 g. (3.2)moles) of potassium hydroxide was stirred with 340 ml. of gently boiling absolute ethanol. This is more than enough hydroxide to make a saturated solution. Over a period of three hours, 196 g. (1.52 moles) of CF₂ClCH₂CH₂CH₃ was added dropwise. The operating skill consists in adding the halide at exactly the rate at which CF_2 CHCH₂CH₃ is produced and removed through the reflux condenser to be liquefied in a Dry Ice cooled receiver. When the halide is added too rapidly, it accumulates and automatically lowers the temperature of the reaction to the boiling point of the azeotropic mixture of the halide with ethanol. At this lower temperature dehydrohalogenation is exceedingly slow. The yield obtained was 83.3% of pure diffuoroolefin, and in addition 6%of unreacted reagent was recovered.

The hydrofluorination of CF2-CHCH2CH3 to CF₃CH₂CH₂CH₃ is a quantitative, highly exothermic reaction. One mole of the olefin was mixed with four moles of hydrogen fluoride at -80° in a steel container. The container was sealed, then allowed to warm up to room temperature. The reaction started spontaneously and proceded to completion within a few seconds, causing the pressure to rise temporarily to 16 atmospheres. The reaction mixture was left to cool spontaneously to room temperature, after which it was placed in a water-bath held at 40°. The reaction products were then released through a water washer followed by an alkali washer, dried over calcium chloride and condensed in an icecooled receiver protected against losses by a trap held at -80° . The yields were from 96 to 99% of pure CF₃CH₂CH₂CH₃.

Additional quantities of $CF_2ClCH_2CH_2CH_3$ were obtained by working up the intermediate $CFCl_2CH_2CH_2CH_3$. The latter was dehydrohalogenated in 90% yield to $CFCl=CHCH_2CH_3$ by means of a saturated solution of potassium hydroxide in boiling ethanol. To obtain CF_2 - $ClCH_2CH_2CH_3$, the hydrofluorination of the olefin was carried out substantially as above, except that heating at 65° for eight hours was needed to complete the addition. This is a detail of much practical importance because the olefin and its hydrofluorinated product boil only 1.6° apart and their separation from an incompletely reacted mixture is exceedingly impractical.

In the various hydrofluorinations, it was assumed that addition took place in strict accordance with the rule of Markownikow. This assumption was verified by subjecting both CFCl₂-CH₂CH₂CH₃ and CF₂ClCH₂CH₂CH₃ to halogen exchange with mercuric fluoride in the manner previously described.³ The resulting trifluoride proved to be identical with the sample prepared by hydrogen fluoride addition to a double bond.

Chlorination

In sunlight and in the presence of water, $CF_3CH_2CH_2CH_2$ gave only two of the possible three monochlorides. $CF_3CH_2CHClCH_3$ and $CF_3CH_2CH_2CH_2CH_2Cl$ were formed in a ratio of 4:5, while $CF_3CHClCH_2CH_3$ was completely absent. As in previous cases^{1,2} the group alpha to the fluorinated cluster resisted chlorination; the beta and gamma groups were affected in a manner which deviated but slightly from random chlorination, in favor of the beta group.

Illustrating again the previously observed tendency of the chlorine atoms to accumulate on the same carbon, further chlorination of CF_3CH_2 -CHClCH₃ yielded 8 parts of $CF_3CH_2CCl_2CH_3$ to 6 parts of $CF_3CH_2CHClCH_2Cl$ while further chlorination of $CF_3CH_2CH_2CH_2Cl$ gave 2 parts of $CF_3CH_2CH_2CHCl_2$ to 1 part of CF_3CH_2CHCl- CH₂Cl. When $CF_3CH_2CHCl_2$ was chlorinated, the product far predominant was found to be $CF_3CH_2CH_2CCl_3$.

Identifications

While the experimental work was in progress, the identities of the chlorides were postulated from the agreement between the observed boiling points and those predicted by analogies with propane derivatives previously studied. As boiling points of isomers differ markedly (see table of physical constants) and can be predicted within one or two degrees, the method is of considerable help. The formulas were, however, verified as follows:

Fluorination of the compound thought to be $CF_3CH_2CCl_2CH_3$ yielded a pentafluoride which proved identical with that obtained previously from $CCl_3CH_2CF_2CH_3^2$ and therefore had to be $CF_2CH_2CF_2CH_3$. The position of both chlorine atoms in the starting material had thus been correctly postulated.

The monochloride from which $CF_3CH_2CCl_2CH_3$ was obtained must perforce have been CF_3CH_2 -CHClCH₃. Its isomer must have been CF_3CH_2 -CH₂CH₂Cl because it boiled higher, and also because it proved different from $CF_3CHClCH_2CH_3$ which was synthesized for the purpose of identification, as follows. Chlorine was added to CF_2 =CH₂CH₂CH₂CH₃ to yield $CF_2ClCHClCH_2CH_3$. The latter was fluorinated with mercuric fluoride.

(3) Henne and Flanagan, THIS JOURNAL, 65, 2362 (1943).

CF1CH1CH2CHCl1

TABLE I

PHYSICAL CONSTANTS The analyses were performed by Dr. W. M. MacNevin and Mr. Joseph Varner, by the procedure described in Mr. Varner's Master's thesis, The Ohio State University, 1943.											
CFCl2CH2CH2CH1	0.1	-112.4	95.3	1.1578	1.4007	30.41	1.10	48.9	49.0	13.1	13.2
CF1CICH1CH1CH1	.004	-119.39	56,03	1.0754	1.3462	25.47	1.07				
CFCI-CHCH:CHI	. 1	-144.9	54.4	1.0216	1.3851	24.90	0.93	32.7	32.7	17.2	17.5
CF2=CHCH2CH2	. 1	-164.95	3.71	0.9284 (0°)	1.3253 (0°)	19.97	0.99				
CF1CH2CH2CH1	.02	-114.79	16.74	1.0144	1.2921	20.51	1.05		••	50.7	50.8
CF2CICHCICH2CH1		Below - 100	96.98	1.2715	1.3878	30.24	1,02				
CF1CHCICH1CH1		Below -100	58.3	1.1967	1.3369	25.4	1.07	24.2	24.2	38.6	38.9
CF1CH1CHCICH1	.1	- 79.24	65.63	1.2133	1.3433	25.54	1.10	24.0	24.2	38.7	38.9
CF1CH2CH2CH2CI	. 02	- 67.25	86.60	1.2425	1.3505	25.41	1.06	24.4	24.2	39.2	38.9
CF1CH2CCl2CH1		Ca48	89.90	1.374	1.355	30.6	1.14	39.3	39.2	31.3	31.5
CF1CH2CF2CH1	. 01	- 35.01	40.14	1,2666	1.2824	20.67	1.10		••	63.8	64.1
CF1CH2CHCICH2CI			115	1.390							

1.382

110

in hydrogen fluoride as a solvent, a process which is known to fluorinate a halogen cluster in preference to a single halogen atom.^{1,8} The resulting CF₃CHClCH₂CH₃ proved different from both the isomers formed in the chlorination of CF₃CH₂-CH₂CH₃.

The structure of $CF_3CH_2CHClCH_2Cl$ was derived from the fact that it was obtained from both $CF_3CH_2CH_2CH_2CH_2Cl$ and $CF_3CH_2CHClCH_3$.

Purification and Physical Constants.—The purification procedure and the physical measurements were carried out as indicated in the preceding paper,² and with the degree of accuracy shown in the table.

Reactivity Tests.—Tested with a boiling solution of silver nitrate in alcohol,² CF₃CHCl-CH₂CH₃ and CF₃CH₂CH₂CH₂CH₂CH₃ gave negative results while CF₃CH₂CH₂CH₂Cl gave a faint turbidity. The interpretation was that both the alpha and the beta chlorine atoms were immobilized by the CF₃ group, while the gamma chlorine atom was only repressed. The influence of a CF₃ group extends, therefore, further than that of a —CF₂— group.²

Treated with alcoholic alkali, CF₃CHClCH₂CH₃ did not react; CF₃CH₂CHClCH₃ gave CF₃CH= CHCH₃; and CF₃CH₂CH₂CH₂CH₂Cl gave an ether CF₃CH₂CH₂CH₂CH₂-O-R. The first two results are similar to those recorded in the preceding paper² for the monochloro derivatives of CH_8CF_2 . CH_2CH_3 . The formation of an ether in gamma position shows that the chlorine atom is too far from the CF_3 group to be affected by it and behaves like that of butyl chloride, which also gives an ether when so treated.

Summary

 $CF_3CH_2CH_2CH_3$ was synthesized by the action of hydrogen fluoride on CCl_2 —CHCH₂CH₃, which yields $CF_2ClCH_2CH_2CH_3$, followed by hydrogen chloride removal to $CF_2:CHCH_2CH_3$ then hydrogen addition to $CF_3CH_2CH_2CH_3$. Chlorination did not affect the alpha CH_2 , but only the beta CH_2 (4 parts) and the gamma CH_3 (5 parts). Further chlorination tended to accumulate on the carbon atoms already affected. The CF_3 group immobilized alpha and beta chlorine atoms and repressed a gamma chlorine atom, thus proving more effective in this respect than a CF_2 group; it also accentuated the acid character of the alpha hydrogen atoms.

Columbus, Ohio

RECEIVED MAY 7, 19454

⁽⁴⁾ This manuscript was originally received on October 11, 1943, and after examination by the editorial board was accepted for publication in THIS JOURNAL. It was, however, referred to the National Defense Research Committee and at their request was withheld from publication, in a confidential file, until clearance was granted on May 5, 1945.